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Exact explicit functional relationships associating thermophysical character- 
istics of two-layer structures with parameters of nonsteady thermal action on 
a specimen are presented. 

In many cases of actual practice there arises the need to determine the thermophysical 
characteristics of materials involving two-ply compositions (structural fragments) without 
destruction of their integrity. Using the approach outlined in [i-3] for this purpose, we 
can construct exact explicit relationships which relate the thermophysical characteristics 
of materials with the results obtained in the measurements of nonsteady surface temperatures 
and inward heat flows that change arbitrarily over time. 

Let us examine the heat model of a two-ply specimen whose outside layer is subjected 
to the action of a heat flow q(~), while the inside layer, because of the duration of the 
operation, may be regarded as a thermally "thick" layer (semibounded). 

In the course of the experiment, let us record the temperature of the surface subjected 
to the action of the heat and to the incoming heat flow that arbitrarily changes with time. 
From the data obtained in the measurements of TI(T) and q(T) we have to determine the thermo- 
physical characteristics of the materials from which the two-ply specimen has been fabricated. 
A similar problem was examined in [4-6], where certain limitations were imposed on the condi- 
tions of the experiment, and the unknown parameters had no explicit expression in terms of 
the measurement results from the initial parameters, i.e., of the temperatures and heat flows. 

Within the framework of a linear model of thermal conductivity, the mathematical formu- 
lation of the problem takes the form 
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Differentiating expression (9) with respect to s, we obtain 
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Thus, between the thermophysical characteristics, of the heated surface in the case of 
a thermally "thick" inside wall we find the following functional relationship: 
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It follows from an analysis of relationships (13)-(15) that the derived functional r=- 
lationship between the thermophysical characteristics of the outer layer q(~), T~(r) in ex- 
plicit form does not contain the thermophysical characteristics of the inner layer, in which 
case the latter may be treated as a thermally "thick" wall. This circumstance apparently 
simplifies the problem of determining X~, a~. 

Indeed, based on relationships (15), in the presence of information with regard to q(~), 
T~(z) in one or possibly two operations involving various laws q(r) governing change over 
time for the determination of Xz and I~C~ we will have 

%aC~ = # ~ J  -- qhJq~ , ( 1 6 )  

where the subscripts i and j pertain to the various time intervals of a single operation 
or to some arbitrary time interval of two operations with differing q(~). It should be noted 
that with "small" z, when the outer layer has not yet been heated (it behaves as a thermally 
"thick" wall), the integral combination ~i apparently differs insignificantly from zero, 
since the equality (XICI)I/2TI(s) = s-Z/2q(s) must be satisfied. Therefore, the parameter 
~ICI may be determined on the basis of measurement data for q(x) and TI(T) during the initial 
period of thermal action, i.e., XIC I = ~a/~2. Using the measurement data for Tz(T) and q(x) 
to calculate the integral ~z and evaluating the difference of this integral from zero as 
a function of the time interval of the heat-treatment operation, we can easily determine 
the parameter X~/~z by means of relationship (15), involving the use of the earlier found 
values for the parameter X~C~. 

Let us note that the thermophysical characteristics of the outer layer can be obtained 
directly on the basis of (13)-(14) by calculation of the corresponding Laplace integrals 
of the experimental functions T~(~), q(x). The required number of equations in this case 
for the determination of %~, XzC~ can be obtained by calculating the integrals contained 
in (13)-(14) for various values of the transform parameter s or by using the measurement 
data for T~(~), q(x) in operations with different conditions of thermal action and by cal- 
culating the corresponding Laplace integrals for T~(X), q(x), ~(~), q(x). 

In addition to the above-cited relationships for the thermophysical characteristics of 
the outer layer, on the basis of relationship (12) we can obtain the calculated relationships 
in somewhat different form. It follows from (12) that 
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After determination of the parameter ~:/6: on the basis of (19), the parameter X:C: 
(or a: = X:/C:) can be found by using formula (15): 
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where t i and tj are the operational processing intervals. 

If we take into consideration the information that we have with regard to the thermophysi- 
cal characteristics of the outer layer, we can find the thermophysical characteristics of 
the inner layer on the basis of relationship (i0), written in somewhat different form: 
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With these relationships we have exhausted the problem of determining the thermophysi- 
cal characteristics of a two-ply composite material whose heat model assumes that the inside 
layer throughout the operation behaves similarly to a thermally "thick" wall. 

Some interest has been shown in the possibility of using the above-derived functional 
relationships to determine the geometric parameters of a two-ply structure. For example, 
in dealing with a heat model with a thermally "thick" inside layer, we find that relation- 
ship (15) for certain thermophysical characteristics of the outer layer makes it possible 
to determine the thickness of that layer (on the basis of temperature measurements from the 
heated surface and from the intensity of the thermal effect on that surface) in accordance 
with the formula 

61 = %ICI~ (T)-- ~3 (T) ' (24) 

in which case we have no need for any information regarding the thermophysical characteristics 
of the inside layer, since this information in explicit form does not enter into the calcula- 
tion relationship, but rather these data obviously make themselves felt in terms of the mea- 
sured temperature values. Relationship (24), given here, exhibits a rather simple structure 
for practical utilization of the heat method of monitoring the film-coating thickness, etc., 
in those cases in which other methods, for a variety of reasons, cannot be utilized. 

In order to test the validity of the derived relationships in the determination of the 
thermophysical characteristics of the outer layer when its thickness is known or to deter- 
mine the thicknesses with known thermophysical characteristics, we made use of a numerical 
simulation experiment in which we used, as the initial "measurement" information, data from 
the solution of a series of direct thermal-conductivity problems involving diverse laws of 
variation over time for incoming heat flows with various thermophysical characteristics of 
the inner layer. Figure 1 shows the results of our estimates on the basis of data from a 
single operation with regard to the parameters I l and liC I of the outer layer under conditions 
in which the action of the heat flow varies over time for various thermophysical character- 
istics of the inner layer [here the "true" value of the thermal conductivity of the outer 
layer in all of the experiments was assumed to be equal to 40 W/(m'K), and that of the param- 
eter 11C I was assumed to be equal to 0.144.109 W.J/(m~.K2), with the thickness of the outer 
layer amounting to 3 mm]. From the results shown in Fig. i, it follows that in using "pre- 
cise" initial data, we find that the calculated values for the parameters i and liC l of the 
outer layer converge rather rapidly toward their true values with an increase in the dura- 
tion of the operational intervals employed for the processing. Figure 2 shows the results 
from estimates of the thickness of the outer layer for known thermophysical characteristics 
in the case of different versions of the specified thermophysical characteristics of the 
inner layer and for various laws governing the change in time of the incoming heat flows. 
Just as in the case examined above, we note extremely rapid convergence of the calculated 
values for the parameter 6~ to its true value (3 mm) with an increase in the duration of 
the operational time intervals employed for the processing. 

The effect of the random errors in the initial information on the results of estimat- 
ing the unknown parameters was studiea through introduction into the "exact" original data, 
by means of a standard subprogram, of a random error with a uniform distribution. Table 
1 shows the results from an estimate from the parameter I l for the outer layer, involving 
the use of "measurement" data for TI(T) and q(T), containing random errors with OT1 = 

0.011TII, Oq = 0.011q I. Here we processed the data from several operations with diverse 
heating conditions and different thermal conductivities for the inside layer; the volumet- 
ric heat capacity of the inside layer in all of the experiments amounted to 2.3.106 J/(m3.K). 
The columns under operation 1 show the results of estimating the parameter 11 where the flow 
of heat acts as a constant intensity over time, while the columns for operations 2 and 3 
show the parameter estimates under the action of heat flows varying sinusoidally in time. 
From the results presented in Table 1 it follows that the presence of small random errors 
in the original information leads to slower convergence of the estimated parameter to its 
actual value as a function of the time intervals of the operations utilized in the process- 
ing. Nevertheless, for those operations used as an example we can assert completely accep- 
table accuracy in the estimates, which demonstrates the effectiveness of the proposed cal- 
culation algorithms. 
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Fig.  1. Ca lcu la ted  va lues  of  the  parameters  ~1C1 (1-4) and 
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T, sec. 
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Fig. 2. Calculated values of outer-layer thickness: 1"4) 61 
at constant q and 5-8) 61 with sinusoidal q in the case of an 
inside-layer thermal conductivity of 6, 25, 30, and i00 W/(m. 
K), respectively. 6i, mm. 

TABLE i. Results from Estimates of the Parameter X I in the 
Presence of Random Errors in the Initial Data; X, W/(m.K) 

Operation i Oper___at!i9n 2 I Operation 3 
�9 , s e e  

1 3 0  100  1 30  1:00 [ 30  lO0  

0,5 
1,0 
1,5 
2,0 
2,5 
3,0 
3,5 
4,0 
4,5 

42,7 
40,4 
,43,1 
39,8 
39,3 
42,6 
37,1 
43,3 
39,0 

54,9 
41,6 
54,0 
38,7 
37,7 
51,2 
31,4 
53,9 
37,3 

28,6 
37,7 
31,4 
42,3 
43,0 
32,5 
58,3 
3t,9 
43,2 

49,0 
39,9 
40,2 
40,3 
40,6 
40,6 
40,0 
39,9 
39,6 

79,8' 
39,5 
41,2 
42, 1 
41,8 
41,9 
40,3 
39,3 
39,3 

J,7 
38,3 
37,6 
38,4 
38,5 
39'6 
40,4 
40,5 

45,7 
40,7 
41,6 
36,2 
39,3 
44,2 
55,6 
33,6 
37,8 

39,9 
49,3 
41,6 
41,1 
43,2 
42,0 
45;2 
38,0 
40,0 

40,2 
33,6 
38,4 
38,4 
36,4 
38,4 
36,1 
41,8 
40,6 

NOTATION 

T, temperature; r, r, space coordinates; ~, t, 0, ~, ~, time; %, coefficient of ther- 
mal diffusivity for the outside layer; kl, coefficient of thermal conductivity for the out- 
side layer; CI, volumetric heat capacity of the outside layer; ?2, coefficient of thermal 
diffusivity for the inside layer; k2, coefficient of thermal conductivity for the inside 
layer; C2, volumetric heat capacity of the inside layer; 61, thickness of the outside layer. 
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CALCULATING CONVECTIVE HEAT EXCHANGE IN A HYPERSONIC VISCOUS SHOCK LAYER 

V. G. Shcherbak UDC 533.6.011 

The streamlining of bodies with catalytic surfaces is investigated within the 
framework of a model of a hypersonic three-dimensional viscous shock layer. 

With the motion of a body on an entry glide path the segment of the trajectory subjected 
to heat stresses lies in the region of nonequilibrium dissociation in which consideration 
must be given to a variety of physicochemical processes. The solution of such problems with- 
in the scope of total Navier-Stokes equations involves considerable difficulties, even when 
using the latest computer equipment, and a solution has been found only for axisymmetric 
flows. In order to carry out mass calculations it is expedient to employ simplified models 
and approximate relationships which permit estimates of the solution with retention of ac- 
ceptable accuracy. 

The present paper covers an investigation into the flows of heat to an indestructible 
blunt-body surface, and this study is based on the equations of a three-dimensional hyper- 
sonic viscous shock layer [i]. The equations describing the flow contain terms from the 
equations for the boundary layer and the nonviscous shock layer in hypersonic approximation. 
A model for a hypersonic or thin viscous shock layer was first proposed in [2] for two-dimen- 
sional flows. This model is an asymptotic form of the Navier-Stokes equations for large 
Mach and Reynolds numbers, as well as for the density ratios behind and in front of the shock 
wave, which is characteristic of the main portion of the glide trajectory. 

The nonequilibrium chemical reactions and the multicomponent diffusion are taken into 
consideration in these equations. Thermal and pressure diffusion can be neglected. It is 
assumed that the internal degrees of freedom are excited in equal measure. 

An absence of heat flow to the body is assumed in the boundary conditions at the sur- 
face of an impermeable body, and the effects of catalytic atom recombination at the wall 
are taken into consideration. The generalized Rankine-Hugoniot relationships are used as 
the boundary conditions at the shock wave, and these relationships allow us to take into 
consideration the effects of molecular transfer within the shock-wave zone. 

The method of numerical solution is analogous to that described in [i]. Unlike that 
particular reference, provision is made in the equations for all of the nonsequential space 
measurement terms, thus allowing us more exactly to determine the flows of heat in regions 
of lower Reynolds numbers than was the case in [i]. 

Let us examine the flow in the vicinity of the critical point of a convex blunt body 
which is the point at which a plane perpendicular to the velocity vector of the approaching 
flow is tangent to the surface of the body. The equation for the surface of the body in 
this vicinity can be approximated to an accuracy of second-order terms by the equation of 
an elliptic paraboloid: 

Institute of Mechanics, M. V. Lomonosov Moscow State University. Translated from Inzhe- 
nerno-Fizicheskii Zhurnal, Vol. 56, No. 2, pp. 298-301, February, 1989. Original article 
submitted October 15, 1987. 

0022-0841/89/5602-0213512.50 �9 1989 Plenum Publishing Corporation 213 


